Monatshefte für Chemie 114, 661-667 (1983)

Mixed Dialkyltin(IV) Trifluoroacetates

Anju Midha^a, Rajender D. Verma^{a,*}, K. Brown^b, and R. V. Parish^b

^a Department of Chemistry, Panjab University, Chandigarh-160014, India
^b Department of Chemistry, UMIST, Manchester M60 IQD, United Kingdom

(Received 3 November 1982. Accepted 17 November 1982)

Mixed dialkytin(IV) trifluoroacetates, $MeEtSn(O_2CCF_3)_2$, $EtPr^nSn(O_2CCF_3)_2$ and $Pr^nBu^nSn(O_2CCF_3)_2$ have been prepared by metathetical reactions of the corresponding dialkyltin(IV) chlorides with silver trifluoroacetate in CH₂Cl₂. They are monomeric in benzene and nonconducting in $MeNO_2$ and MeCN. Bidentate trifluoroacetate groups are indicated by their IR spectra. $M\ddot{o}ssbauer$ spectra confirm trans-arrangement of the R-Sn-R' moiety. ¹H, ¹⁹F NMR and mass spectra are also discussed.

(Keywords: IR; Mass spectra; Mössbauer spectra; NMR, ¹⁹F)

Gemischte Dialkylzinn(IV)-trifluoracetate

Die gemischten Dialkylzinn(IV)-trifluoroacetate $MeEtSn(O_2CCF_3)_2$, $EtPr^nSn(O_2CCF_3)_2$ und $Pr^nBu^nSn(O_2CCF_3)_2$ wurden über Metathese-Reaktionen der entsprechenden Dialkylzinn(IV)-chloride mit Silbertrifluoracetat in CH_2Cl_2 dargestellt. Sie sind monomer in Benzol und nichtleitend in $MeNO_2$ und MeCN. Die IR-Spektren zeigen zweizähnige Trifluoracetat-Gruppen an. Die Mössbauer-Spektren bestätigen die trans-Anordnung der R-Sn-R'-Einheit. Die 1H-, ¹⁹F-NMR und die Massenspektren werden ebenfalls diskutiert.

Introduction

Various organotin(IV) trifluoroacetates are known^{1,2}. Few mixed alkyltin(IV) trifluoroacetates are reported²⁻⁴. This communication deals with the preparation and characterization of hitherto unknown mixed dialkyltin(IV) trifluoroacetates.

Experimental

RR'SnCl₂, R = Me, R' = Et, R = Et, $R' = Pr^n$, $R = Pr^n$, $R' = Bu^n$ and silver trifluoroacetate were prepared by literature methods⁵⁻⁸. In a typical prepara-

		Analyses	$(\sqrt[6]{0})^{a,h}$			Molar Cond.	(Ohm ⁻¹ cm ² 1	nol ⁻¹)	Mol. Wts
Compound	Sn	Ē	C	H	m. p. (°C)	$Me NO_2$	Me CN	Cale.	Found
$MeEt{ m Sn}({ m O}_2{ m CCF}_3)_2$	30.32 (30.59)	29.28 (29.30)	21.48 (21.59)	$2.02 \\ (2.06)$	47-49	2.15	3.69	389	401
$Et \ Pr^n \ { m Sn}({ m O}_2 { m CCF}_3)_2$	28.28 (28.54)	27.30 (27.34)	25.69 (25.90)	2.79 (2.88)	50-52	4.41	8.70	417	425
$Pr^n Bu^n \operatorname{Sn}(\operatorname{O_2CCF_3})_2$	26.22 (26.74)	25.10 (25.62)	29.10 (29.66)	3.54 (3.59)	55-57	3.09	6.46	445	470
^a Calc. values are i ^b Sn as SnO ₂ , F (R	in parenthe tef. ⁹), C and	sis. Ì H microar	alytically.						

Table 1. Analytical data, m. p., molar conductance and molecular weights

662

A. Midha et al.:

Me Et Sn($O_2 CCF_3)_2$	$EtPr^n \operatorname{Sn}(O$	$_2 \text{CCF}_3)_2$	Pr^nBu^nS	$n(O_2 CCF_3)_2$	
Solid	CCl_4	Solid	CCl_4	Solid	CCl_4	Assignments
$2945\mathrm{m}$	$2945\mathrm{m}$	$2945\mathrm{m}$	$2945\mathrm{m}$	$2945\mathrm{m}$	$2945\mathrm{m}$	$\nu_{as}CH$
$2920\mathrm{m}$	$2920\mathrm{m}$	$2920\mathrm{m}$	$2915\mathrm{m}$	$2915\mathrm{m}$	$2920\mathrm{w}$	$\nu_{as}CH$
$2860\mathrm{w}$	$2860\mathrm{w}$	$2860\mathrm{m}$	$2860\mathrm{m}$	$2860\mathrm{m}$	$2860\mathrm{m}$	$\nu_{s} CH$
$1662\mathrm{s}$	$1662\mathrm{s}$	$1658\mathrm{s}$	$1660\mathrm{s}$	$1660\mathrm{s}$	$1660\mathrm{s}$	$\nu_{as} CO_2$
$1458\mathrm{m}$	$1458\mathrm{m}$	$1460\mathrm{w}$	$1460\mathrm{w}$	$1460\mathrm{s}$	$1460\mathrm{s}$	
$1420\mathrm{w}$	$1419\mathrm{w}$	$1422\mathrm{m}$	$1425\mathrm{m}$	$1425\mathrm{m}$	$1422\mathrm{m}$	
$1380\mathrm{w}$	$1382\mathrm{w}$	$1375\mathrm{s}$	$1378\mathrm{m}$	$1378\mathrm{m}$	$1375\mathrm{m}$	i
$1210\mathrm{w}$		$1220\mathrm{w}$		$1210\mathrm{w}$		$_{ m v}{ m CF_3}$
$1185{ m sb}$		$1190{ m sb}$	$1185{ m sb}$	$1190\mathrm{s}$	$1185{ m sb}$	$ m vCF_3$
$1150\mathrm{s}$		1 150-1 160	sb —	$1150\mathrm{s}$		$_{ m v}{ m CF_3}$
$1015\mathrm{s}$		1 020 m		$1022\mathrm{w}$		$\rho_t CH_2$
$960\mathrm{s}$		$980\mathrm{s}$		$960\mathrm{s}$		$\rho_r CH_3$
$850\mathrm{s}$	$850\mathrm{s}$	$850\mathrm{s}$	$850\mathrm{s}$	$850\mathrm{s}$	$845\mathrm{s}$	vC—C
$799\mathrm{s}$		$799\mathrm{s}$		$795\mathrm{s}$		δOCO
$728\mathrm{s}$		$728\mathrm{s}$		$725\mathrm{s}$		CCO_2 (in-
						plane bend)
$685\mathrm{s}$	$685\mathrm{s}$	$685\mathrm{s}$	$690\mathrm{s}$	$682\mathrm{s}$	$682\mathrm{s}$	\mathbf{CF}_{3} bend
$590\mathrm{m}$	$585\mathrm{m}$	$585\mathrm{m}$	$590\mathrm{w}$	$590\mathrm{m}$	$592\mathrm{m}$	CF ₃ sym.
-						bend
$570\mathrm{w}$	$570 \mathrm{w}$	$545\mathrm{w}$		$550\mathrm{w}$	$545\mathrm{w}$	Vas Sn-C
515 w	$512 \mathrm{m}$	$512\mathrm{m}$	510 s	510 s	$530\mathrm{s}$	$\widetilde{\mathrm{CF}}_{2}$ asy, bend
490 m	490 m	480 m	$482 \mathrm{m}$	482 m	$470\mathrm{m}$	v Sn—Č
$430 \mathrm{w}$	$430\mathrm{m}$	440 w	430 m	430 m		CCO y-bend
3458		340 s		382 m	$380\mathrm{m}$	CCO 8-bend
$292 \mathrm{m}$	$290\mathrm{m}$	$295\mathrm{m}$		$295\mathrm{m}$	$295\mathrm{m}$	v Sn—O
		,				-

Table 2. Infrared spectral data (cm^{-1})

tion of mixed dialkyltin(IV) trifluoroacetate stoichiometric amounts of the corresponding dialkyltin(IV) chloride and silver trifluoroacetate were stirred in dry CH₂Cl₂ for 2-3 h at room temperature. AgCl precipitated was filtered off in N₂ atmosphere. The filtrate was evaporated *in vacuo* to get a solid compound.

Results and Discussion

The preparation of \mathbf{A} : $MeEtSn(O_2CCF_3)_2$, \mathbf{B} : $EtPr^nSn(O_2CCF_3)_2$, and \mathbf{C} : $Pr^nBu^nSn(O_2CCF_3)_2$ may be represented as:

$$RR' \operatorname{SnCl}_2 + 2\operatorname{AgO}_2\operatorname{CCF}_3 \rightarrow RR' \operatorname{Sn}(O_2\operatorname{CCF}_3)_2 + 2\operatorname{AgCl}$$

The compounds are colourless, hygroscopic solids, soluble in polar and non-polar organic solvents (Table 1).

	<u></u> δа, b	$\Delta^{\mathbf{a}}$			δ(H) ^c			$\delta(\mathbf{F})$
Compound	$(\mathrm{mmS^{-1}})$	$(\mathrm{mmS^{-1}})$	H_1	H_2	${ m H_3}$	${ m H}_4$	H_{5}	
$Me Et Sn(O_2CCF_3)_2$	1.68	4.31	1.27	1.80	1.45			74.98
$Et Pr^n \operatorname{Sn}(O_2 \operatorname{CCF}_3)_2$	1.69	4.52	1.79	1.49	1.87	1.56	1.16	74.99
$Pr^n Bu^n \operatorname{Sn}(\operatorname{O_2CCF_3})_2$	1.69	4.55	multiplets 1.75-2.		-2.20 -1.50	75.4		

Table 3. Mössbauer-, H¹- and F¹⁹-NMR data

 $a \pm 0.05 \,\mathrm{mm \, S^{-1}}$.

^b Relative to SnO₂ at 80 K.

^c The protons have been numbered as:

Infrared Spectra

The IR frequencies $(4\ 000\ 200\ \text{cm}^{-1})$ of **A**-**C** (in KBr/nujol and $0.2\ M$ solution in CCl₄) are recorded in Table 2 with tentative assignments. Solid and solution IR absorptions show essentially no change. Molecular weights in benzene indicate them to be monomeric in solution. The non-conducting nature of **A**-**C** in $MeNO_2$ and MeCN (Table 1) rule out their ionic nature. The positions of $v_{as}CO_2$ have been used in deciding the bonding mode in trifluoroacetates¹. $v_{as}CO_2$ around 1660 cm⁻¹ in **A**-**C** (Table 2) are consistent with bidentate coordination of trifluoroacetate groups¹.

Mössbauer Spectra

Quadrupole splitting values of hexa-coordinated octahedral organotin(IV) compounds play an important role in deciding the relative positions of alkyl/aryl groups, particularly in dialkyl/aryltin(IV) compounds. It has been concluded that for *trans*-arrangement ($\sim 4 \text{ mm S}^{-1}$) of *R*-Sn-*R* is twice that for *cis*-arrangement. The values for **A**-**C** (Table 3) are in good agreement for the *trans*-arrangement of the alkyl groups. Almost similar isomer shifts of **A**-**C** may be due to same s-electron density around tin because of similar nature of the substituents.

Fig. 1. Mass spectra of $RR' \operatorname{Sn}(O_2 \operatorname{CCF}_3)_2$

¹H and ¹⁹F NMR

In view of the complex nature of the proton spectra of A-C (CCl₄ solution, Varian EM-390) it is difficult to assign it exhaustively. However, some assignments have been made (Table 3). The chemical shifts for methyl and ethyl protons in A are close to that of methyl protons in Me_2 SnCl₂¹¹ and methyl protons of the ethyl group (1.42 ppm) of Et_2 Sn (O₂CCF₃)₂¹². In **B**, the chemical shifts lie close to those of the corresponding protons in diethyl (1.68, 1.42) and di-*n*-propyltin(IV) (1.50, 1.08) trifluoroacetates respectively. In **C**, the chemical shifts in the regions 1.75-2.20 may be assigned to H₁, H₂, H₄ and H₅ and 1.15-1.50 to H₃, H₆ and H₇ protons. These protons have been numbered as shown in Table 3.

A. Midha et al.:

The room temperature ¹⁹F NMR spectra of CCl₄ and CH₂Cl₂ solutions of A-C exhibit a single peak around 75 ppm upfield^{1,2} with respect to CCl₃F. The chemical shifts are independent of the solvent used. A small spread of chemical shifts in trifluoroacetates limits the utility of ¹⁹F NMR data for interpretation of the nature of coordination of trifluoroacetate groups. The presence of only one peak indicates essentially free rotation of the CF₃ moiety about the C—C bond.

Mass Spectra

The assignments of the mass spectral peaks (¹²⁰Sn only) are given in Fig. 1. The common features of the spectra are the high stability of $\operatorname{Sn} R_3^+$ ions and the low abundance of the parent ions. The base peak in all these compounds is a mono-substituted tin fragment. The fragmentation pattern conforms to the hypothesis of preferred Sn^{IV} and Sn^{II} valence states in the tin containing fragments¹³.

The probable fragmentation for $RR' \operatorname{Sn}(O_2 \operatorname{CCF}_3)_2$ may be:

Acknowledgements

Award of S. R. C. Research Studentship to K.B. and C. S. I. R. Senior Research Fellowship to A.M. are gratefully acknowledged.

References

- ¹ Garner C. D., Hughes B., Advances in Inorganic Chemistry and Radiochemistry 17, 1 (1975).
- ² Midha A., Verma R. D., Indian J. Chem. 20 A, 627 (1981).
- ³ Anderson H. H., Inorg. Chem. 1, 647 (1962).
- ⁴ Calogero S., Clemente D. A., Peruzzo V., Taglivini G., J. Chem. Soc. (Dalton) 1979, 1172.
- ⁵ Jaura K. L., Lal K., Inorg. Nucl. Chem. Lett. 13, 297 (1977).
- ⁶ Jaura K. L., Dhingra K. K., Mahajan R. K., Lal K., Z. f. Anorg. Allgem. Chem. 445, 242 (1978).

666

- ⁷ Jaura K. L., Lal K., J. Less Common Metals 55, 93 (1977).
- ⁸ Sharp D. W. A., Brown D. H., Moss K. C., Ballie M. J., J. Chem. Soc. A 1968, 3110.
- ⁹ Radheshwar P. V., Dev R., Cady G. H., J. Inorg. Nucl. Chem. 34, 3913 (1972).
- ¹⁰ Fitzsimmons B. W., Seeley N. J., Smith A. W., J. Chem. Soc. A 1969, 143.
- ¹¹ Lal K., Ph.D. Thesis, Panjab University (1978).
- ¹² Midha A., Verma R. D., Indian J. Chem., in press.
- ¹³ Gieleen M., Mayence G., J. Organomet. Chem. 12, 363 (1968).